Gene selection in cancer classification using sparse logistic regression with Bayesian regularization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene selection in cancer classification using sparse logistic regression with Bayesian regularization

MOTIVATION Gene selection algorithms for cancer classification, based on the expression of a small number of biomarker genes, have been the subject of considerable research in recent years. Shevade and Keerthi propose a gene selection algorithm based on sparse logistic regression (SLogReg) incorporating a Laplace prior to promote sparsity in the model parameters, and provide a simple but effici...

متن کامل

Gene Selection in Cancer Classification using Sparse Logistic Regression with Bayesian Regularisation

Motivation: Gene selection algorithms for cancer classification, based on the expression of a small number of biomarker genes, have been the subject of considerable research in recent years. Shevade and Keerthi (2003) propose a gene selection algorithm based on sparse logistic regression (SLogReg) incorporating a Laplace prior to promote sparsity in the model parameters, and provide a simple bu...

متن کامل

Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization

Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it does not induce feature selection. In this paper, we presented a new hybrid L1/2 +2 regularization (HLR) function, a linear combination of L1/2 and L2 penalties, to select the relevant gene in the lo...

متن کامل

Sparse Bayesian kernel logistic regression

In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based MacKay’s evidence approximation. The model is re-parameterised such that an isotropic Gaussian prior over parameters in the kernel induced feature space is replaced by an isotropic Gaussian prior over the transformed parameters, facilitating a Bayesian analysis using stan...

متن کامل

Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data

Monitoring gene expression profiles is a novel approach to cancer diagnosis. Several studies have showed that the sparse logistic regression is a useful classification method for gene expression data. Not only does it give a sparse solution with high accuracy, it provides the user with explicit probabilities of classification apart from the class information. However, its optimal extension to m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2006

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btl386